STAT 5: Comprehensive Final Review TikTok Trends

Antonio Aguirre

Department of Statistics, University of California, Santa Cruz

Instructions

This review covers all key topics for the STAT 5 final exam. Use formulas and reasoning, show your work, and interpret your answers in context where requested.

1. Descriptive Statistics: Mean, Variance, and Standard Deviation

Key Concepts

- The sample mean \overline{x} summarizes the central tendency of the data.
- The sample variance s^2 and standard deviation s measure how spread out the data values are.
- Always show your work.

Problem 1. Understanding TikTok Creators' Editing Habits

A researcher records the number of hours spent editing TikTok videos over the last week for a random sample of n = 8 creators:

- (a) (Central Tendency & Spread) Calculate the sample mean \overline{x} and the sample variance s^2 for these data. Write out the formula and show your calculation steps clearly.
- (b) (Measure of Dispersion) Using your result from (a), compute the sample standard deviation s. Explain in one sentence what this number tells you about editing hours among these TikTok creators.

2. Probability Rules: Unions, Complements, and Intersections

Tips

- Use rules for probability of unions, intersections, and complements.
- Let A = "user follows food creators"; B = "user follows dance creators."
- Visual aids (like a Venn diagram) are encouraged!

Problem 2. TikTok Content Preferences

A city-wide survey of TikTok users reports:

- 60% follow **food** content creators (P(A) = ?),
- 50% follow **dance** content creators (P(B) =?),
- 35% follow **both** food and dance creators $(P(A \cap B) = ?)$.

Assume all probabilities are out of all TikTok users in the city.

- (a) (At least one category) What is the probability that a randomly selected user follows at least one of these two categories? Write your answer as $P(A \cup B)$. Show your formula and calculation.
- (b) (Neither category) What is the probability that a user follows neither food nor dance creators? Express your answer as $P((A \cup B)^c)$ and show your reasoning.
- (c) (Food but not dance) What is the probability that a user follows food creators but not dance creators? Express your answer using set notation (e.g., $A \setminus B$ or $A \cap B^c$) and show your calculation.

4. Sampling and Study Design

Problem 4. How to Sample TikTok Habits Fairly?

A research team wants to estimate the **average daily TikTok usage** among undergraduates at a large university. To collect data, they:

- Obtain a complete list of all undergraduate majors offered at the university.
- Within each major, randomly select 15% of the students (for example, if Biology has 200 students, they randomly choose 30).
- Combine all selected students into their final sample.
- (a) (Identify the sampling method) What type of sampling design is being used in this study? Name the method and explain your reasoning using correct terminology.
- (b) (Why use this method?) State one advantage of using this sampling approach in the context of this research. (For example: Why not just take a simple random sample from all undergraduates?)

5. Point Estimates & Proportions

Key Concepts

- The sample proportion \hat{p} estimates the probability or fraction of individuals in the population with a certain characteristic.
- When comparing two groups, always state both sample sizes, sample proportions, and the difference clearly.
- Always show your formulas and plug in the numbers step by step.

Problem 5. Estimating TikTok Posting Rates

In the study from Problem 4, n = 300 students were surveyed, and 72 reported posting at least one TikTok video in the last week.

(a) (Single group)

Calculate the **sample proportion** \hat{p} of students who posted a TikTok last week. Write the formula, plug in the values, and interpret what this number means in context.

(b) (Comparing two groups)

Suppose a second independent group of n = 400 students is surveyed and 88 posted a video.

Find the sample proportion for this second group and compute the **difference in** sample proportions $(\hat{p}_1 - \hat{p}_2)$.

Write out each proportion, the subtraction, and briefly interpret what the difference tells you about the two groups.

6. Confidence Intervals for Mean and Proportion

Key Concepts

- A confidence interval gives a plausible range of values for a population parameter based on sample data.
- Always specify the parameter, the formula you're using, and interpret the result in context.
- For large *n* (like n = 60), use the *z*-interval for means: $\overline{x} \pm z^* \frac{s}{\sqrt{n}}$

Problem 6. Estimating TikTok Screen Time

A random sample of n = 60 TikTok users had a **mean daily screen time** of $\overline{x} = 100$ minutes, with a sample standard deviation s = 20 minutes.

(a) (Calculation) Construct a 95% confidence interval for the mean daily screen time for all TikTok users at this university. Use the z-interval formula for means, and use $z^* \approx 2$ for simplicity. Show your work step by step: formula, substitution, interval.

$$\overline{x} \pm z^* \frac{s}{\sqrt{n}}$$

(b) (Interpretation) Interpret your confidence interval in the context of this study. Be specific about the population and what the numbers mean.

Problem 7. Estimating Posting Rates

Recall from Problem 5: Out of n = 300 surveyed students, 72 reported posting at least one TikTok last week.

(a) Construct a 95% confidence interval for the proportion of all students at this university who posted a TikTok last week. Use the standard normal formula for proportions, z^{*} ≈ 2, and show your calculation.

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

(b) (Optional challenge) How would your answer change if the sample size were much smaller (e.g., n = 15)? Briefly explain.

7. Hypothesis Testing: Proportion and Mean

Key Concepts

- Hypothesis tests help you decide if a sample provides enough evidence to support a claim about a population.
- Always define the parameter, state hypotheses in both symbols and words, and follow a structured process.
- For large samples, use the z-test for proportions and means; use t-test if the population standard deviation is unknown and n is not large.

Problem 8. Testing a TikTok Posting Rate Claim

A TikTok influencer claims that more than 30% of college students have posted at least one video in the past week. Recall from Problem 5: Out of n = 300 students surveyed, 72 reported posting a video.

Test this claim at the $\alpha = 0.05$ significance level.

- (a) (State hypotheses) Define the population parameter and write the null (H_0) and alternative (H_a) hypotheses both in symbols and in plain English.
- (b) (Test statistic) Calculate the sample proportion \hat{p} and compute the test statistic using the z-test for a single proportion:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Show your substitution and calculation steps.

(c) (Decision & reasoning) Without calculating the exact *p*-value, decide whether to reject H_0 or not. Justify your answer by comparing your test statistic to the critical value for $\alpha = 0.05$ (one-sided test). Briefly interpret what your result means in this TikTok context.

Problem 9. Testing for Higher TikTok Screen Time

Suppose the **national average daily TikTok screen time is 90 minutes**. Recall from Problem 6: A sample of n = 60 users at this university had $\overline{x} = 100$ minutes, s = 20 minutes.

Test if this university's students use TikTok more than the national average at the $\alpha=0.05$ level.

- (a) **(State hypotheses)** Clearly define the population mean and write the null and alternative hypotheses in both symbols and words.
- (b) (Test statistic) Compute the test statistic using the one-sample z-test for means (use $z^* \approx 2$ for $\alpha = 0.05$):

$$Z = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

Show your work.

(c) (Decision & interpretation) Based on your test statistic and the critical value, state your decision about the null hypothesis. Interpret your result in the context of TikTok screen time for this university.

8. Statistical Errors and Significance Level

Key Concepts

- In hypothesis testing, there are two possible types of errors:
 - Type I error: Rejecting the null hypothesis when it is actually true.
 - **Type II error**: Failing to reject the null hypothesis when it is actually false.
- The significance level α is the probability of making a Type I error.

Problem 10. Understanding Hypothesis Test Errors (in TikTok Context) Recall the hypotheses from Problem 8:

- H_0 : The proportion of college students who posted a TikTok last week is at most 0.30.
- H_a : The proportion is greater than 0.30.
- (a) **(Type I error in context)** In your own words, describe what a **Type I error** would mean in the context of this TikTok posting study.
- (b) **(Type II error in context)** In your own words, describe what a **Type II error** would mean in the context of this TikTok posting study.
- (c) (Significance level) Which type of error is directly controlled by the significance level α ? Briefly explain.

9. Simple Linear Regression

Key Concepts and Tips

- Simple linear regression models the relationship between an explanatory variable x (predictor) and a response variable y (outcome).
- The regression equation is $\hat{y} = b_0 + b_1 x$, where:
 - $-b_1$ (slope): How much y is predicted to change for a one-unit increase in x.
 - $-b_0$ (intercept): The predicted value of y when x = 0.
 - R^2 : The proportion of variability in y explained by x.
- Use $b_1 = r \frac{s_y}{s_x}$ and $b_0 = \overline{y} b_1 \overline{x}$.

Problem 11. Predicting TikTok Likes from Follower Counts

A research team studies n = 12 TikTok users. For each user, they record:

- x = number of followers,
- y = average number of likes per video.

The sample statistics are:

- Mean followers: $\overline{x} = 5,000$ Standard deviation: $s_x = 2,000$
- Mean likes: $\overline{y} = 400$ Standard deviation: $s_y = 100$
- Correlation: r = 0.8
- (a) (Calculating the line) Calculate the slope (b_1) and intercept (b_0) of the least-squares regression line for predicting likes from followers. Show the formulas, substitution, and results.
- (b) (Writing the regression equation) Write the equation of the regression line in the form $\hat{y} = b_0 + b_1 x$.
- (c) (Interpreting the slope) Interpret the slope (b_1) in the context of this study. What does it mean about the relationship between followers and likes?
- (d) (R^2 calculation and interpretation) Calculate R^2 and interpret its meaning in the context of TikTok likes and followers.

10. Reading and Interpreting Two-Way Tables

Key Concepts

- Two-way tables help organize counts and allow you to calculate probabilities for combined events.
- Always start by calculating the **total sample size**, row totals, or column totals as needed.
- Express your answers as probabilities (e.g., $\frac{\text{count}}{\text{total}}$) and simplify where possible.

Problem 12. TikTok Posting by Gender: Exploring a Two-Way Table

A survey of college students records their self-identified gender and TikTok posting frequency over the last month. The results are summarized below:

	Never	Sometimes	Often
Female	30	25	15
Male	35	20	10

Note: Begin by calculating the total number of students in the sample.

- (a) **(Joint Probability)** What is the probability that a randomly selected student from this sample is **male and posts TikToks often**? *Show your setup and calculation.*
- (b) (Union Probability) What is the probability that a randomly selected student is female or posts TikToks often? Be careful: Remember to use the general addition rule for "or." Show your setup, intermediate steps, and calculation.
- (c) (Conditional Probability) What is the probability that a student posts sometimes, given that they are female? Write your answer as P(Sometimes | Female) and show your calculation.

Antonio Aguirre Department of Statistics, UCSC