STAT 131 — Discussion 11 Hints & Solutions

Prepared for students

University of California, Santa Cruz

Quick reminders

Discrete vs. continuous: the wisest quick test is to check the *support*. Countable set (e.g. $\{-3, \ldots, 3\}$) \Rightarrow pmf. Intervals/areas (e.g. 0 < x < y < 9) \Rightarrow pdf.

From a joint pdf to marginals: if $f_{X,Y}(x,y)$ is given on a region R, then

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$$

Inverse CDF method: If $U \sim \text{Unif}(0,1)$ and G is a target CDF, then $Y = G^{-1}(U)$ has that distribution.

1. Call center: marginals from a triangular support

Given: joint pdf

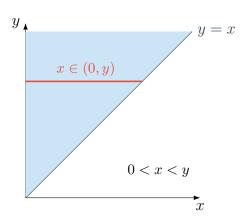
$$f_{X,Y}(x,y) = e^{-y}$$
 on $0 < x < y < \infty$, and 0 elsewhere.

(Here X is time on hold; Y is total call time.)

How to read the pictures

- The shaded wedge is the support $R = \{(x, y) : 0 < x < y\}$ (we show a truncated window for visibility).
- **Left:** fix a y (horizontal line). Inside R the allowed x runs from 0 to y, so $f_Y(y) = \int_0^y e^{-y} dx = ye^{-y}$ for y > 0.
- **Right:** fix an x (vertical line). Inside R the allowed y runs from x to ∞ , so $f_X(x) = \int_x^\infty e^{-y} dy = e^{-x}$ for x > 0.

$$f_Y(y) = y e^{-y} (y > 0)$$
 and $f_X(x) = e^{-x} (x > 0)$.



y

Figure 1: * Horizontal slice for $f_Y(y) = \int_0^y f_{X,Y}(x,y) dx$. Vertical slice for $f_X(x) = \int_x^\infty f_{X,Y}(x,y) dy$.

Figure 2: *

Discrete transform: $X \in \{-3, -2, -1, 0, 1, 2, 3\}$ equally likely, $Y = X^2 - X$

Each x has probability 1/7. Map $x \mapsto y = x^2 - x$:

Collect equal outputs:

$$P(Y=0) = \frac{2}{7} (x=0,1), \ P(Y=2) = \frac{2}{7} (x=-1,2), \ P(Y=6) = \frac{2}{7} (x=-2,3), \ P(Y=12) = \frac{1}{7} (x=-3)$$

Hence the pmf is

$$p_Y(y) = \begin{cases} 2/7, & y \in \{0, 2, 6\}, \\ 1/7, & y = 12, \\ 0, & \text{otherwise.} \end{cases}$$

3. Build Y with pdf $g(y)=\frac{3}{8}y^2$ on (0,2) from $X\sim$ Unif(0,1)

We use the inverse CDF method.

Step 1 (target CDF).

$$G(y) = \int_0^y \frac{3}{8} t^2 dt = \frac{y^3}{8}, \qquad 0 < y < 2.$$

Step 2 (invert). Set $U \in (0,1)$ and solve $U = G(y) = y^3/8$:

$$y = (8U)^{1/3}$$
.

Step 3 (define the transform). If $X \sim \text{Unif}(0,1)$ and we set

$$Y = r(X) = (8X)^{1/3},$$

then by the inverse CDF theorem Y has pdf $g(y) = \frac{3}{8}y^2$ on (0,2).

Check (optional)

Differentiate $G(y)=y^3/8$ to recover g(y); or apply the 1D change–of–variables formula with $r^{-1}(y)=y^3/8$.