STAT 131 — Discussion (Lecture 8) Solutions

Prepared for students

University of California, Santa Cruz

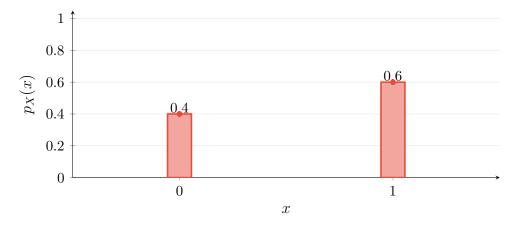
Reading the figures

- PMF (bar plot): heights are probabilities; they sum to 1.
- CDF (step plot, right-continuous): jumps occur exactly at points with positive probability; dashed line at y = 0.5 helps identify a median.
- Discrete median test: A number m is a median if $P(X \leq m) \geq \frac{1}{2}$ and $P(X \geq m) \geq \frac{1}{2}$.

1. PMF and CDF for $X \sim \text{Bernoulli}(0.6)$

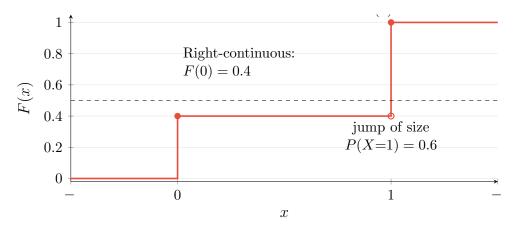
Basics. P(X = 1) = 0.6, P(X = 0) = 0.4.

(a) PMF (bar chart)



Note. 0.4 + 0.6 = 1. The support is $\{0, 1\}$.

(b) CDF (step plot)



This shows the jump sizes equal the point masses: $F(0) - F(0^-) = 0.4$ at x = 0, and $F(1) - F(1^-) = 0.6$ at x = 1.

2. Medians via the CDF

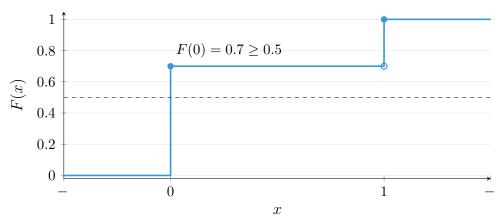
(a) $X \sim \text{Bernoulli}(0.6)$

 $F(0) = 0.4 < \frac{1}{2}$, $F(1) = 1 \ge \frac{1}{2}$. Also $P(X \ge 1) = 0.6 \ge \frac{1}{2}$ while $P(X \ge 0) = 1$. Hence the discrete median criterion holds only for m = 1.

$$\operatorname{Median}(X)=1.$$

(b) $X \sim \text{Bernoulli}(0.3)$ (CDF for clarity)

Here P(X=1) = 0.3, P(X=0) = 0.7.



Since $F(0)=0.7\geq \frac{1}{2}$ and $P(X\geq 0)=1,\ m=0$ is a median. But $P(X\geq 1)=0.3<\frac{1}{2}$, so m=1 is not.

$$Median(X) = 0.$$