STAT 131 — Discussion Solutions (Lec 1 & Lec 2)

Prepared by Antonio Aguirre University of California, Santa Cruz

How to read these solutions

Each item is solved in three short moves: **set up** the notation, show the **key idea** step-by-step, and **box** the final value or set.

Discussion (Lec 1)

1. Two balanced dice: sample space and "same value" event

Sample space. Let the first die be D_1 and the second D_2 . The sample space is

$$\Omega = \{(i, j) : i \in \{1, 2, 3, 4, 5, 6\}, \ j \in \{1, 2, 3, 4, 5, 6\}\}.$$

This has $|\Omega| = 6 \cdot 6 = 36$ outcomes.

Event that both rolls are the same.

$$E = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\} = \{(k,k) : k \in \{1,\ldots,6\}\}.$$

(Optional) If needed later, |E|=6 and P(E)=6/36=1/6 for fair dice.

2. Campus survey with two attributes

Let U = "undergraduate", G = "graduate" ($G = U^c$), O = "living off campus" and O^c = "living on campus". Universe size is N = 60. Given:

$$|U| = 36, \quad |O| = 9, \quad |U \cap O| = 3.$$

(a) Number who are undergraduates, or living off campus, or both. This is $|U \cup O|$.

$$|U \cup O| = |U| + |O| - |U \cap O| = 36 + 9 - 3 = \boxed{42}.$$

(b) Number of undergraduates living on campus. This is $|U \cap O^c| = |U| - |U \cap O| = 36 - 3 = \boxed{33}$.

(c) Number of graduate students living on campus. First |G| = N - |U| = 60 - 36 =24. Also $|G \cap O| = |O| - |U \cap O| = 9 - 3 = 6$. Hence

$$|G \cap O^c| = |G| - |G \cap O| = 24 - 6 = \boxed{18}.$$

(Equivalently, all on-campus: 60 - 9 = 51, subtract undergrad on-campus 33 to get 18.)

3. Set identities

- (a) Show that $A = (A \cap B) \cup (A \cap B^c)$. Proof. For any ω , if $\omega \in A$, then either $\omega \in B$ or $\omega \in B^c$. In the first case $\omega \in A \cap B$; in the second, $\omega \in A \cap B^c$. Thus $A \subseteq (A \cap B) \cup (A \cap B^c)$. The reverse inclusion is immediate since both $A \cap B$ and $A \cap B^c$ are subsets of A. Hence equality.
- (b) About a likely typo and the intended identity. The statement often intended is: If $B \subseteq A$, then $A = B \cup (A \cap B^c)$. This is exactly part (a), and when $B \subseteq A$ we also have $A \cap B = B$, giving the useful partition $A = B \cup (A \setminus B)$ with disjoint pieces.

Note on the printed version. If one writes $A = B \cup (A \cap B)$ under the assumption $B \subseteq A$, then the right-hand side simplifies to B (since $A \cap B = B$), which would force A = B. So the version with B^c is the correct general identity.

Discussion (Lec 2)

1. Two balanced dice: probability the sum is odd

Let E be the event "sum is odd". A sum is odd iff one die shows an odd number and the other an even number. Each die has 3 odd and 3 even faces, and the dice are independent:

$$P(E) = P(\text{odd, even}) + P(\text{even, odd}) = \left(\frac{3}{6} \cdot \frac{3}{6}\right) + \left(\frac{3}{6} \cdot \frac{3}{6}\right) = \frac{1}{2}.$$

(Counting check: there are 18 odd-sum outcomes out of 36 total.)

2. At least one of two students fails

Let A = "student 1 fails", B = "student 2 fails". Given

$$P(A) = 0.5, \quad P(B) = 0.2, \quad P(A \cap B) = 0.1.$$

We want $P(A \cup B)$ (at least one failure). By inclusion–exclusion,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.5 + 0.2 - 0.1 = \boxed{0.6}.$$

(Complement check: P(neither fails) = 1 - 0.6 = 0.4.)

If a step feels fast, mark that specific line and ask about it in office hours.