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Scope

This handout solves every item in the Discussion/Refresher section only.
Homework problems are intentionally omitted. No figures or sketches are
used.

Glossary (used consistently)

• Integration by Parts (IBP):

∫
u dv = u v −

∫
v du.

• Fundamental Theorem of Calculus (FTC):
d

dx

(∫ x

a
f(t) dt

)
= f(x) and

d

dx

(∫ g(x)

a
f(t) dt

)
= f(g(x)) g′(x) (FTC + Chain Rule).

• Convexity: f is convex if f ′′(x) ≥ 0; its graph lies above every tangent line.

• Swap order of integration: Re-express
∫∫

R
(·) dx dy by carefully rewriting

the region R in the opposite order.
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0.1 Math Refresher — Fully Worked

A) Series: definitions and simplifications (Example 0.1)

Let x ∈ R. We derive each closed form, keeping steps explicit.

(a) Finite geometric sum. Claim.
n∑

k=0

xk =
1− xn+1

1− x
for x ̸= 1 (and = n + 1 when

x = 1).
Proof. Let Sn = 1 + x+ x2 + · · ·+ xn and suppose x ̸= 1. Then

xSn = x+ x2 + · · ·+ xn+1,

Sn − xSn = (1 + x+ · · ·+ xn)− (x+ · · ·+ xn+1) = 1− xn+1,

(1− x)Sn = 1− xn+1 ⇒ Sn =
1− xn+1

1− x
.

If x = 1, the sum is n+ 1. □

(b) Infinite geometric sum (|x| < 1). Claim.
∞∑
k=0

xk =
1

1− x
for |x| < 1.

Proof. Take n → ∞ in part (a). Since |x| < 1, we have xn+1 → 0, hence

∞∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=

1

1− x
. □

(c) Arithmetic–geometric sums (finite and infinite). Finite. For x ̸= 1,

n∑
k=1

k xk−1 =
d

dx

( n∑
k=0

xk
)
=

d

dx

(1− xn+1

1− x

)
=

(
− (n+ 1)xn

)
(1− x)− (1− xn+1)(−1)

(1− x)2
(quotient rule)

=
−(n+ 1)xn + (n+ 1)xn+1 + 1− xn+1

(1− x)2
=

1− (n+ 1)xn + nxn+1

(1− x)2
.

Multiplying by x gives

n∑
k=1

k xk =
x
(
1− (n+ 1)xn + nxn+1

)
(1− x)2

.

Infinite (|x| < 1). Letting n → ∞ (so xn → 0 and xn+1 → 0) yields

∞∑
k=1

k xk−1 =
1

(1− x)2
,

∞∑
k=1

k xk =
x

(1− x)2
. □
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B) Integrals and changing order (Example 0.2)

1. Single integral. Evaluate

∫ ∞

0

y e−y dy. Solution (IBP). Take u = y and dv =

e−y dy; then du = dy and v = −e−y.∫ ∞

0

y e−y dy =
[
− y e−y

]∞
0
+

∫ ∞

0

e−y dy.

We have limy→∞ ye−y = 0 (e.g., by L’Hôpital: limy→∞ y/ey = lim 1/ey = 0), so the boundary
term is 0− 0 = 0 and ∫ ∞

0

e−y dy =
[
− e−y

]∞
0

= 1.

Therefore

∫ ∞

0

y e−y dy = 1 . □

2. Triangular double integral with e−y. Evaluate

∫ ∞

0

∫ y

0

e−y dx dy. Solution. The

inner integral does not depend on x, so∫ y

0

e−y dx = (y − 0) e−y = y e−y.

Thus ∫ ∞

0

∫ y

0

e−y dx dy =

∫ ∞

0

y e−y dy = 1 .

(Alternatively, swapping order gives the same value.) □

3. Log-shaped region. Evaluate

∫ e

x=1

∫ log x

y=0

1 dy dx. Solution (as written).

∫ e

1

[ ∫ log x

0

1 dy
]
dx =

∫ e

1

log x dx =
[
x log x− x

]e
1
= 1 .

Same value by swapping order. The region satisfies 1 ≤ x ≤ e and 0 ≤ y ≤ log x.
Equivalently: 0 ≤ y ≤ 1 and 1 ≤ x ≤ ey, so∫ 1

y=0

∫ ey

x=1

1 dx dy =

∫ 1

0

(ey − 1) dy =
[
ey − y

]1
0
= 1 . □

C) Fundamental Theorem of Calculus (FTC)

If f is continuous on [a, b],

d

dx

(∫ x

a

f(t) dt

)
= f(x),

d

dx

(∫ g(x)

a

f(t) dt

)
= f(g(x)) g′(x).
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Plain-English version

Differentiate an “area-so-far” function by evaluating the integrand at the moving limit,
then multiply by the speed of that limit (the Chain Rule).

D) Euler’s number e (two limits; simple rigorous proofs)

1. lim
n→∞

(
1 +

1

n

)n
= e.

Proof. Let an = (1 + 1
n
)n. Then ln an = n ln(1 + 1

n
). Use the elementary bounds (valid for

u > −1):

−u2

2
≤ ln(1 + u)− u ≤ 0.

With u = 1
n
, we get

1− 1

2n
≤ n ln

(
1 + 1

n

)
≤ 1.

By the squeeze theorem, n ln(1 + 1
n
) → 1, hence ln an → 1 and an → e. □

2. lim
n→∞

(
1 +

x

n

)n
= ex for fixed x ∈ R.

Proof. Let bn = (1 + x
n
)n. Then ln bn = n ln(1 + x

n
) and, with u = x

n
,

−x2

2n
≤ n ln

(
1 + x

n

)
− x ≤ 0.

Thus n ln(1 + x
n
) → x, so ln bn → x and bn → ex. □

E) Comparing ex with lines on (0, 1) (Example 0.3)

(a) ex > 1 + x for 0 < x < 1. Proof 1 (series). ex = 1 + x+
x2

2!
+

x3

3!
+ · · · > 1 + x.

Proof 2 (convexity). f(x) = ex has f ′′(x) = ex > 0, so f is convex. The tangent line at
0 is 1 + x, and a convex function lies above its tangents, with equality only at the point of
tangency. Hence ex > 1 + x for x ̸= 0. □

(b) e−x > 1− x for 0 < x < 1. Proof 1 (series). e−x = 1− x+
x2

2
− x3

3!
+ · · · > 1− x.

Proof 2 (calculus). Let g(x) = e−x − (1 − x). Then g(0) = 0 and g′(x) = −e−x + 1 =
1− e−x ≥ 0 for x ≥ 0. Hence g is increasing on [0,∞) and g(x) > 0 for x > 0. □

F) Harmonic number size and bounds

Define Hn =
∑n

k=1
1
k
. We give the standard integral comparison.
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Claim. For n ≥ 1,
log(n+ 1) ≤ Hn+1 ≤ 1 + log n.

Proof. For x ∈ [k, k + 1] with integer k ≥ 1, we have
1

k + 1
≤ 1

x
≤ 1

k
. Integrating over

[k, k + 1] and summing k = 1, . . . , n yields

n∑
k=1

1

k + 1
≤
∫ n+1

1

dx

x
≤

n∑
k=1

1

k
.

The left sum is Hn+1 − 1; the right sum is Hn. Rearranging gives the stated bounds. □

Tiny self-checks

1. Differentiate
∑∞

k=0 x
k (for |x| < 1) to confirm

∑∞
k=0 kx

k−1 =
1

(1− x)2
.

2. Swap the order of
∫ 2

0

∫ y

0
(y + 1) dx dy and recompute (you should get

∫ 2

0
(2y −

y2) dy).

3. Use convexity to give a one-line proof that ex ≥ 1 + x for all x ∈ R.

If a step feels too fast, circle it and ask about that exact line. Specific questions help everyone.
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